CASE PRESENTATION

Situs inversus totalis and cardiac rhythm/conduction disorders

Miruna Ocos¹, Lucian Petrescu¹,², Cristina Vacarescu¹, Cristian Mornos¹,², Emilia-Violeta Goanta³, Simina Crisan¹,², Oana Patru³, Nicolae Catalin³, Dragos Cozma¹,²

Abstract: Introduction – Situs inversus totalis is a rare congenital malformation, diagnosed at about 1 from 10.000 of patients. Its diagnosis is usually made incidentally. Case report – Female patient, 46 years old, diagnosed with dextrocardia at the age of 16 based on chest X ray, is referred to our clinic for assessment of one syncopal episode. The ECG trace at admission revealed sinus bradycardia, a heart rate of 35 beats per minute, negative T waves in precordial leads V1, V2. Transthoracic echocardiography revealed concordant atrioventricular and ventriculo-arterial connections, normal size for both ventricles, normal biventricular function and mild tricuspid regurgitation. A dual pacemaker was performed, with favorable evolution. Discussions – Limited data about patients with situs inversus totalis and rhythm/conduction disorders, makes more difficult their management, being fundamental to make a correct diagnosis. The implantation technique of a patient with dextrocardia can be a very challenging one.

Keywords: situs inversus totalis, rhythm/conduction disorders, dextrocardia.

INTRODUCTION

Situs inversus, a rare congenital malformation, described for the first time by Matthew Baille. It is an autosomal recessive genetic condition, but sometimes it can be X-linked. The term situs inversus, short form of the Latin “situs inversus viscerum” describes the inverted position of abdominal and chest organs. When associated with dextrocardia, it is referred as situs inversus totalis¹. There are also cases of situs inversus with levocardia, these are rare and 95% of them are associated with congenital heart diseases, most commonly transposition of great vessels². About 25% of individuals with situs inversus can have primary ciliary dyskinesia, the so called Kartagener syndrome, characterized by bronchiectasis and chronic sinusitis³. Generally individuals are asymptomatic, unaware of their anatomical variation, being diagnosed by mistake.

CASE REPORT

A 46 year old, female patient, diagnosed with dextrocardia at the age of 16 based on X-ray fluoroscopy, was referred to our clinic for assessment of one syncopal episode. In addition she was diagnosed with situs inversus totalis 3 years ago. Her physical examination...
was normal, with resting blood pressure in left arm of 120/60 mmHg and a heart rate of 35 beats per minute at rest. On cardiovascular examination, the apex was present in the 6th intercostal space on the right side, lateral to mid clavicular line, rhythmic heart sounds, without murmurs.

The ECG trace at admission revealed sinus bradycardia, a heart rate of 35 beats per minute, a QRS axis of 0 grd, narrow QRS complexes and negative T waves in precordial leads V1-V2 (Figure 1). The biologic investigations revealed high levels of triglyceride. Transthoracic ecocardiography showed mirror image dextrocardia, concordant atrioventricular and ventriculo-arterial connections, normal size for both ventricles, EF 55%, normal function of the right ventricle (TAPSE of 23 mm) and mild tricuspid regurgitation (Figure 2). During her hospitalization we made two Holter monitoring that revealed severe bradycardia with junctional escape rhythm; a medium heart of 30 beats/minute, numerous sinus pauses greater than 3000 ms, the maximum of 5000 ms, numerous isolated premature ventricular contractions and systematized, with maximum length no more than 5 complexes. It is important to emphasize that the patient was paucisymptomatic during her monitoring. At the stress test, the patient achieved 125 W, maximum heart rate was 76 beats/minute (only 44% of her target), that showed a chronotropic incompetence; without induction of nonsustained or sustained tachyarrhythmias during all stages.

Considering that the patient had a family history of sudden death (father deceased at age 49), the suspicion of arrhythmogenic right ventricular dysplasia (ARVD) was raised, so we had to establish whether the patient has indication for an implantable cardioverter defibrillator or a pacemaker. We so performed an MRI, the systolic and diastolic function of both ventricles were normal, also the absence of fibro-fatty inflammation affecting the right ventricle helped us to rule out the diagnosis of ARVD. The MRI showed the total transposition of abdominal and thoracic viscera (the so called mirror image of the internal organs normal positioning) (Figure 3). We managed also to exclude different structure cardiac anomalies which can be associated with dextrocardia such as interventricular defects, transposition of the great vessels4. Therefore according to „2015 ESC Guidelines on cardiac pacing and resynchronization therapy” our patient has class I indication, level of evidence C for pacemaker (PM) implant. The next day, under antibiotic protection, a dual chamber PM was implanted, using the left subclavicular vein access. Through the left superior vena cava, two passive leads were implanted, one in the right ventricular apex and one in the right atrial appendage; the senses and threshold parameters were appropriate (Figure 4). Regarding the implantation technique,
The implantation technique of a patient with dextrocardia can be a very challenging one, that is why before the procedure it is important to gather informations about the anatomy and the presence or absence of congenital abnormalities, very common at this patients. As far as we know, few cases with situs inversus totalis who were implanted using the left vascular access were reported in literature, our patient being one of them.

Conflict of interest: none declared.

Authors’ contributions: Concept/design: OM, CV, DC, LP; Data collection: OM, CV, CN, OP, Data analysis/interpretation: DC, CM, SC; Drafting article: OM, CV, CN, EVG, SC; Critical revision of article: LP, CM, DC.

Abbreviations
- ARVD arrhythmogenic right ventricular dysplasia
- MRI magnetic resonance imaging
- PM pacemaker
- TAPSE tricuspid annulus planse systolic excursion
- EF ejection fraction

References