The role of three-dimensional echocardiography for the clinical diagnosis and management of mitral valve disease

Andrada-Camelia Guta1,2,3, Roberto Carlos Ochoa-Jimenez2,4, Patrizia Aruta2, Sorina Mihaila Baldea1, Daniela Bartos1, Bogdan Alexandru Popescu1,3, Luigi Paolo Badano2, Denisa Muraru2

Abstract: Echocardiography plays a central role in the characterization of the mitral valve (MV) morphology and function. In the past decade, the development of three-dimensional echocardiography (3DE) has revolutionized valvular imaging, becoming the technique of choice for an accurate evaluation of the MV anatomy and pathophysiology. Transthoracic and transoesophageal 3DE represent complementary imaging techniques to assess the complex MV apparatus in the beating heart, to plan interventions, to monitor transcatheter procedures (e.g. MitraClip, mitral valve balloon valvuloplasty, and paravalvular leak closure) and to assess the results of surgical repair. The aim of this article is to review the contribution of 3DE in evaluating the anatomy and function of the MV apparatus in a variety of MV diseases, highlighting the current clinical applications of this essential echocardiography technique.

Keywords: mitral valve, three-dimensional echocardiography, morphology, mitral regurgitation, mitral stenosis

INTRODUCTION

The echocardiographic assessment of the mitral valve (MV) provides valuable insights into the aetiology and severity of the MV disease, which makes it essential to plan interventions, to guide and monitor transcatheter procedures, and to assess the results of surgical repair1. However, the MV is a complex three-dimensional structure that requires multiple views and complex mental reconstruction processes to figure out its anatomy using conventional two-dimensional echocardiography (2DE). Conversely, by using three-dimensional echocardiography (3DE), we can assess the non-planar mitral annulus (MA) and mitral leaflets, the complex subvalvular apparatus and their anatomic relationships with the surrounding structures, by virtually “dissecting” the beating heart using different cut planes1.

Although cardiac magnetic resonance (CMR) has a higher spatial resolution than echocardiography, with the important advantage of non-invasiveness, its clinical use is limited due to increased acquisition time, costs, limited availability and lack of portability at the bedside or in the catheterization and operative rooms2. Multi-detector computed tomography, though...
used for MA anatomical assessment and spatial relationship to plan transcatheter interventions, has major limitations related to the inferior temporal resolution, radiation exposure, use of iodinated contrast, the impossibility of real-time imaging, flow assessment or regurgitation severity grading. Accordingly, 3DE has emerged as the reference standard technique to assess MV morphology and function into clinical practice.

This review will address the applications of 3DE, providing an update on its current role for the diagnosis and clinical management of patients with various MV pathologies.

STEP-BY-STEP EVALUATION OF THE MITRAL VALVE MORPHOLOGY AND FUNCTION

The normal function of the MV requires the structural integrity of all the components of MV apparatus, which includes: leaflets, MA, chordae tendineae, papillary muscles (PMs), left ventricle (LV) and left atrium (LA), as well as their coordinated functional relationships during the cardiac cycle. A previous study showed that 3DE gives additional information to 2DE MV morphological assessment in 36% of patients.

MV leaflets

Normal MV leaflets are thin and highly mobile structures, only partially visualized using tomographic techniques. 2DE allows the visualization of the MV leaflets only from the ventricular perspective. Conversely, 3DE allows the visualization of the whole anterior and posterior leaflets of the MV in the same cut plane, which can be rotated to display the MV either from the ventricular or the atrial (also called surgical) perspective (Figure 1). As a consequence, the echocardiographer does not need to imagine the actual anatomy of the MV from a limited number of tomographic views, but he/she is able to see an anatomically sound image of the MV in the beating heart. All derived views make it possible to obtain a detailed anatomical description of the MV (i.e. presence of calcifications, clefts, prolapses, attached masses, etc.), and allow an easier pre-, intra- and post-procedural assessment compared with conventional 2DE imaging. Moreover, the „surgical view” of the MV by 3DE facilitates the communication between imaging expert, interventionalist and surgeon. Finally, real-time 3DE gives the unique advantage of a detailed functional assessment of the MV, which is essential to guide valvular interventional procedures. Using dedicated software, the 3D geometry of mitral leaflets and MA can be easily reconstructed and quantified (Figure 2).

Subvalvular apparatus

The subvalvular apparatus, which includes the PMs and their chordae tendineae, is best appreciated using multiple longitudinal cut planes, allowing an optimal view of the PMs origin and of the chordal insertions on both PMs and MV leaflets. Chordal thickening, elonga-

![Figure 1](image-url)
tion or rupture are easily visualized using 3DE volume rendering display\(^1\).

Mitral annulus

The MA is a pliable, non-planar, saddle-shaped structure that interconnects the MV leaflets with the LA and LV walls. The anterior part of MA is the most elevated point of the saddle, while the posterior part includes the lowest points of the saddle (near the medial and lateral commissures) and the posterior “horn”\(^8\). When viewed in cross-section, MA is D-shaped, with the straight border adjacent to the aortic valve\(^9\). The MA is also a highly dynamic structure, during the cardiac cycle: its area reaches a nadir in early systole, conversely its tenting height reaches its maximum at mitral valve closure\(^10,11\). Conventional 2DE diameters (i.e. anteroposterior and inter-commissural) are not suitable to provide reliable information about the complex 3D shape and function of the MA. Using commercially available dedicated software packages applied to 3DE data sets, a comprehensive assessment of the MA geometry and function is possible at the bedside for clinical purposes\(^12,13\). These measurements have important implications in selecting the optimal strategy for patients requiring MV surgical or interventional treatment.

Quantification of mitral regurgitation severity

Complementary to conventional 2DE and Doppler parameters, the use of 3D colour flow Doppler imaging may improve the quantification of MV regurgitation and help to guide transcatheter procedures by precisely identifying the origin of abnormal intracardiac flows\(^14-16\).

3DE quantification has allowed to increase the diagnostic accuracy and reproducibility of the MR severity by integrating new parameters in its systematic approach. Planimetry of the vena contracta area and measurement of 3D effective regurgitant orifice area allow the evaluation of the functional and anatomical regurgitant orifice area, respectively (Figure 7)\(^17,19\). Both parameters are devoid of any geometrical as-
Assumption about the shape of the orifice and have been particularly useful in patients with eccentric regurgitant jets. Effective regurgitant orifice area and regurgitant volumes obtained from 3DE proximal isovelocity area were also reported to significantly increase the accuracy of MR severity quantification, but the method is available on a single echocardiography system. Recently, updated American Society of Echocardiography guidelines on valvular regurgitations recommend the routine use of 3DE imaging for a comprehensive assessment of MR.

Assessment of LV and LA volumes and function

3DE proved to be more accurate than conventional 2DE to assess the LV and LA geometry and function. In patients undergoing MV surgery, 3DE end-systolic LV volume was an independent predictor of postoperative LV dysfunction. 3DE end-systolic LV volume provided additive prognostic value on top of M-mode end-systolic diameter and 2DE LV end-systolic volume. Finally, 3DE LA minimal volume is emerging as a predictor of adverse outcome in asymptomatic patients with severe organic MR.

The Added Value of 3DE in Mitral Stenosis

Management of mitral stenosis (MS) patients relies on an accurate measurement of the mitral orifice area and a comprehensive assessment of MV complex anatomy (extent of leaflet thickening, commissural fusion, calcification, degenerative changes of subvalvular apparatus, etc.). Doppler-based methods for MV area assessment are heavily influenced by flow dependence, cardiac rhythm and rate, associated regurgitation, as well as the angle of insonation. Planimetric MV area by 2DE frequently overestimates the actual residual orifice area, since there is no landmark to confirm that the parasternal short-axis 2DE view of the MV is obtained exactly at the level of the smallest MV area and oriented perpendicular to the MV opening axis. 3DE has overcome these limitations by allowing to position the crop plane at the tips of the stenotic MV.

Figure 3. Transthoracic three-dimensional quantitation of rheumatic mitral stenosis severity. The cut plane of the three-dimensional dataset (green dotted line) is perpendicular to the opening direction of the mitral valve orifice, at the tip of mitral leaflets level, allowing an accurate planimetry of the smallest residual opening orifice.
of MV prolapse (MVP) by conventional echocardiography, degenerative MV disease prevalence was highly overestimated mostly due to the saddle-shape geometry of the MA and the false appearance of leaflets billowing using M-mode and 2DE. By demonstrating the complex shape of the MA, 3DE has led to the reconsideration of the MVP definition as the leaflet displacement above the higher points of the MA. Using the en face view of the MV from the atrial perspective, the echocardiographer can easily evaluate both MV leaflets and identify precisely the prolapsing scallops bulging into the LA. 3DE is particularly useful in cases of complex MVP, such as commissural lesions or multi-scallop prolapses. More than 10 years ago, the accuracy of 3D TTE and TEE in diagnosing MVP was described to be 95% and 97%, respectively, but with the latest development of the 3DE technology, nowadays it might be even higher. 3DE has been proved to be useful in both surgical planning and predicting MV repair outcome. Systematic quantification of leaflets length, total surface area, and billowing volume is necessary to identify patients at risk for systolic anterior motion after MV repair.

THE ADDED VALUE OF 3DE IN MITRAL REGURGITATION

Organic mitral regurgitation

The accurate description of the MV anatomy is critical before any treatment decision (surgical versus interventional, and repair versus replacement surgery) in patients with organic MR. Soon after the description
well as direct visualization of the MV subvalvular apparatus anatomy (Figure 6).

THE ADDED VALUE OF 3DE IN MV ENDOCARDITIS

Although 2DE has a good sensitivity in diagnosing MV vegetations due to its high temporal and spatial resolution, the limited number of views is often insufficient to understand the complexity of the lesion (size, ori-
Localisation, size, and mobility of the prosthetic masses are essential information in evaluating the risk of embolization and the proper management strategy. Prosthetic dehiscence or paravalvular leaks are accurately assessed using 3D colour Doppler imaging and 360° rotation around the prosthetic ring, providing critical information for management decision.

THE ADDED VALUE OF 3DE IN CONGENITAL MITRAL VALVE DISEASE

Congenital abnormalities of the MV include both stenotic and regurgitant lesions (Figure 12) and the involvement of other structures etc.) and their functional impact. 3D TEE is the preferred technique in patients with clinical suspicion of MV endocarditis to exclude or confirm the diagnosis and to identify complications (Figure 8).

THE ADDED VALUE OF 3DE IN MITRAL PROSTHESSES

3DE (particularly 3D TEE) is pivotal to assess MV prosthesis normal function (Figure 9) and to evaluate for potential complications: endocarditis, thrombosis, dehiscence, paravalvular leaks, etc. (Figure 10 and 11). Localisation, size, and mobility of the prosthetic masses are essential information in evaluating the risk of embolization and the proper management strategy. Prosthetic dehiscence or paravalvular leaks are accurately assessed using 3D colour Doppler imaging and 360° rotation around the prosthetic ring, providing critical information for management decision.

THE ADDED VALUE OF 3DE IN CONGENITAL MITRAL VALVE DISEASE

Congenital abnormalities of the MV include both stenotic and regurgitant lesions (Figure 12) and the involvement of other structures etc.) and their functional impact. 3D TEE is the preferred technique in patients with clinical suspicion of MV endocarditis to exclude or confirm the diagnosis and to identify complications (Figure 8).

THE ADDED VALUE OF 3DE IN MITRAL PROSTHESSES

3DE (particularly 3D TEE) is pivotal to assess MV prosthesis normal function (Figure 9) and to evaluate for potential complications: endocarditis, thrombosis, dehiscence, paravalvular leaks, etc. (Figure 10 and 11). Localisation, size, and mobility of the prosthetic masses are essential information in evaluating the risk of embolization and the proper management strategy. Prosthetic dehiscence or paravalvular leaks are accurately assessed using 3D colour Doppler imaging and 360° rotation around the prosthetic ring, providing critical information for management decision.

THE ADDED VALUE OF 3DE IN CONGENITAL MITRAL VALVE DISEASE

Congenital abnormalities of the MV include both stenotic and regurgitant lesions (Figure 12) and the involvement of other structures etc.) and their functional impact. 3D TEE is the preferred technique in patients with clinical suspicion of MV endocarditis to exclude or confirm the diagnosis and to identify complications (Figure 8).

THE ADDED VALUE OF 3DE IN MITRAL PROSTHESSES

3DE (particularly 3D TEE) is pivotal to assess MV prosthesis normal function (Figure 9) and to evaluate for potential complications: endocarditis, thrombosis, dehiscence, paravalvular leaks, etc. (Figure 10 and 11). Localisation, size, and mobility of the prosthetic masses are essential information in evaluating the risk of embolization and the proper management strategy. Prosthetic dehiscence or paravalvular leaks are accurately assessed using 3D colour Doppler imaging and 360° rotation around the prosthetic ring, providing critical information for management decision.

THE ADDED VALUE OF 3DE IN CONGENITAL MITRAL VALVE DISEASE

Congenital abnormalities of the MV include both stenotic and regurgitant lesions (Figure 12) and the involvement of other structures etc.) and their functional impact. 3D TEE is the preferred technique in patients with clinical suspicion of MV endocarditis to exclude or confirm the diagnosis and to identify complications (Figure 8).

THE ADDED VALUE OF 3DE IN MITRAL PROSTHESSES

3DE (particularly 3D TEE) is pivotal to assess MV prosthesis normal function (Figure 9) and to evaluate for potential complications: endocarditis, thrombosis, dehiscence, paravalvular leaks, etc. (Figure 10 and 11). Localisation, size, and mobility of the prosthetic masses are essential information in evaluating the risk of embolization and the proper management strategy. Prosthetic dehiscence or paravalvular leaks are accurately assessed using 3D colour Doppler imaging and 360° rotation around the prosthetic ring, providing critical information for management decision.

THE ADDED VALUE OF 3DE IN CONGENITAL MITRAL VALVE DISEASE

Congenital abnormalities of the MV include both stenotic and regurgitant lesions (Figure 12) and the involvement of other structures etc.) and their functional impact. 3D TEE is the preferred technique in patients with clinical suspicion of MV endocarditis to exclude or confirm the diagnosis and to identify complications (Figure 8).

THE ADDED VALUE OF 3DE IN MITRAL PROSTHESSES

3DE (particularly 3D TEE) is pivotal to assess MV prosthesis normal function (Figure 9) and to evaluate for potential complications: endocarditis, thrombosis, dehiscence, paravalvular leaks, etc. (Figure 10 and 11). Localisation, size, and mobility of the prosthetic masses are essential information in evaluating the risk of embolization and the proper management strategy. Prosthetic dehiscence or paravalvular leaks are accurately assessed using 3D colour Doppler imaging and 360° rotation around the prosthetic ring, providing critical information for management decision.

THE ADDED VALUE OF 3DE IN CONGENITAL MITRAL VALVE DISEASE

Congenital abnormalities of the MV include both stenotic and regurgitant lesions (Figure 12) and the involvement of other structures etc.) and their functional impact. 3D TEE is the preferred technique in patients with clinical suspicion of MV endocarditis to exclude or confirm the diagnosis and to identify complications (Figure 8).

THE ADDED VALUE OF 3DE IN MITRAL PROSTHESSES

3DE (particularly 3D TEE) is pivotal to assess MV prosthesis normal function (Figure 9) and to evaluate for potential complications: endocarditis, thrombosis, dehiscence, paravalvular leaks, etc. (Figure 10 and 11). Localisation, size, and mobility of the prosthetic masses are essential information in evaluating the risk of embolization and the proper management strategy. Prosthetic dehiscence or paravalvular leaks are accurately assessed using 3D colour Doppler imaging and 360° rotation around the prosthetic ring, providing critical information for management decision.

THE ADDED VALUE OF 3DE IN CONGENITAL MITRAL VALVE DISEASE

Congenital abnormalities of the MV include both stenotic and regurgitant lesions (Figure 12) and the involvement of other structures etc.) and their functional impact. 3D TEE is the preferred technique in patients with clinical suspicion of MV endocarditis to exclude or confirm the diagnosis and to identify complications (Figure 8).

THE ADDED VALUE OF 3DE IN MITRAL PROSTHESSES

3DE (particularly 3D TEE) is pivotal to assess MV prosthesis normal function (Figure 9) and to evaluate for potential complications: endocarditis, thrombosis, dehiscence, paravalvular leaks, etc. (Figure 10 and 11). Localisation, size, and mobility of the prosthetic masses are essential information in evaluating the risk of embolization and the proper management strategy. Prosthetic dehiscence or paravalvular leaks are accurately assessed using 3D colour Doppler imaging and 360° rotation around the prosthetic ring, providing critical information for management decision.

THE ADDED VALUE OF 3DE IN CONGENITAL MITRAL VALVE DISEASE

Congenital abnormalities of the MV include both stenotic and regurgitant lesions (Figure 12) and the involvement of other structures etc.) and their functional impact. 3D TEE is the preferred technique in patients with clinical suspicion of MV endocarditis to exclude or confirm the diagnosis and to identify complications (Figure 8).

THE ADDED VALUE OF 3DE IN MITRAL PROSTHESSES

3DE (particularly 3D TEE) is pivotal to assess MV prosthesis normal function (Figure 9) and to evaluate for potential complications: endocarditis, thrombosis, dehiscence, paravalvular leaks, etc. (Figure 10 and 11). Localisation, size, and mobility of the prosthetic masses are essential information in evaluating the risk of embolization and the proper management strategy. Prosthetic dehiscence or paravalvular leaks are accurately assessed using 3D colour Doppler imaging and 360° rotation around the prosthetic ring, providing critical information for management decision.

THE ADDED VALUE OF 3DE IN CONGENITAL MITRAL VALVE DISEASE

Congenital abnormalities of the MV include both stenotic and regurgitant lesions (Figure 12) and the involvement of other structures etc.) and their functional impact. 3D TEE is the preferred technique in patients with clinical suspicion of MV endocarditis to exclude or confirm the diagnosis and to identify complications (Figure 8).

THE ADDED VALUE OF 3DE IN MITRAL PROSTHESSES

3DE (particularly 3D TEE) is pivotal to assess MV prosthesis normal function (Figure 9) and to evaluate for potential complications: endocarditis, thrombosis, dehiscence, paravalvular leaks, etc. (Figure 10 and 11). Localisation, size, and mobility of the prosthetic masses are essential information in evaluating the risk of embolization and the proper management strategy. Prosthetic dehiscence or paravalvular leaks are accurately assessed using 3D colour Doppler imaging and 360° rotation around the prosthetic ring, providing critical information for management decision.

THE ADDED VALUE OF 3DE IN CONGENITAL MITRAL VALVE DISEASE

Congenital abnormalities of the MV include both stenotic and regurgitant lesions (Figure 12) and the involvement of other structures etc.) and their functional impact. 3D TEE is the preferred technique in patients with clinical suspicion of MV endocarditis to exclude or confirm the diagnosis and to identify complications (Figure 8).

THE ADDED VALUE OF 3DE IN MITRAL PROSTHESSES

3DE (particularly 3D TEE) is pivotal to assess MV prosthesis normal function (Figure 9) and to evaluate for potential complications: endocarditis, thrombosis, dehiscence, paravalvular leaks, etc. (Figure 10 and 11). Localisation, size, and mobility of the prosthetic masses are essential information in evaluating the risk of embolization and the proper management strategy. Prosthetic dehiscence or paravalvular leaks are accurately assessed using 3D colour Doppler imaging and 360° rotation around the prosthetic ring, providing critical information for management decision.

THE ADDED VALUE OF 3DE IN CONGENITAL MITRAL VALVE DISEASE

Congenital abnormalities of the MV include both stenotic and regurgitant lesions (Figure 12) and the involvement of other structures etc.) and their functional impact. 3D TEE is the preferred technique in patients with clinical suspicion of MV endocarditis to exclude or confirm the diagnosis and to identify complications (Figure 8).

THE ADDED VALUE OF 3DE IN MITRAL PROSTHESSES

3DE (particularly 3D TEE) is pivotal to assess MV prosthesis normal function (Figure 9) and to evaluate for potential complications: endocarditis, thrombosis, dehiscence, paravalvular leaks, etc. (Figure 10 and 11). Localisation, size, and mobility of the prosthetic masses are essential information in evaluating the risk of embolization and the proper management strategy. Prosthetic dehiscence or paravalvular leaks are accurately assessed using 3D colour Doppler imaging and 360° rotation around the prosthetic ring, providing critical information for management decision.
advantages of the 3DE in defining the anatomy of defects and quantifying their haemodynamic implications are similar as described before. The wide range of options to post-process the 3D dataset (cropping, rotation etc.), the multiple displaying modalities (volume rendering, tomographic multi-slices), as well as the unique perception of depth offered by 3DE are pivotal in the process of understanding the complexity of congenital abnormalities\(^{46,47}\). A recent study addressing the prevalence of MV cleft in a population with significant MR, using 3DE, has shown a 3.3% of isolated MV cleft in this population\(^{48}\), a considerably higher percentage compared with previous results based on 2DE (0.07% for isolated posterior mitral leaflet cleft and unknown for isolated anterior mitral leaf cleft), these results being representative for the increased accuracy of 3DE compared to 2DE in evaluating complex MV diseases\(^{49}\).

THE ADDED VALUE OF 3DE IN MITRAL VALVE STRUCTURAL INTERVENTIONS

For the past decade, several percutaneous transcatheter procedures addressing MV pathologies have emerged as alternatives to traditional surgical therapy in high-risk patients. Newer interventional therapies for MV disease – as edge-to-edge repair, annuloplasty,
Figure 11. Mitral periprosthetic regurgitation. Three-dimensional transesophageal volume rendering (Panel A) and colour flow acquisition (Panel B) showing anterolateral periprosthetic regurgitation (between 10-12 o’clock). Multi-slice display to allow planimetric quantitation of the regurgitant orifice (Panel C).

Figure 12. Congenital mitral valve diseases. Two-dimensional short axis view (Panel A) and three-dimensional transthoracic volume rendering of an anterior mitral leaflet cleft from the ventricular perspective (Panel B) in a patient with an incomplete atrio-ventricular canal. Surgical view of the mitral valve showing posterior mitral leaflet cleft, between P2 and P3 scallops (Panel C). Three-dimensional transthoracic volume rendering from the ventricular side showing a double orifice mitral valve - yellow arrows - (Panel D). Transthoracic three-dimensional volume rendering from the ventricular view (Panel E) allowing an accurate identification of the anatomy and localisation of the accessory tissue (red arrow). Two-dimensional transversal cut plane obtained from a transthoracic three-dimensional data set using an intermediary plane between the levels of the aortic valve and the mitral valve to visualise accessory mitral valve tissue (Panel F).
adequate grasping of the desired scallop(s) and adaptation of neochordae length according to the real-time evaluation of the MR severity.

With regard to TMVR, 3D TEE is of major importance for pre-procedural anatomical assessment of the MA and to identify the landmarks used for valve deployment (trigons, aorto-mitral continuity etc.), for characterization of the landing zone – essential in selecting the most appropriate device based on their specific characteristics –, for intraprocedural guidance, confirmation of proper device position, MV prosthesis functional assessment and procedure-related complications. For valve-in-valve TMVR, 3D TEE has an additional role in assessing the presence of inter-device regurgitation (between the transcatheter device and surgical bioprosthesis), with guidance for further balloon post-dilatation in case that multiple jets are evident around the circumference of the newly implanted valve.

MV paravalvular leak is associated with increased morbidity and reoperation has increased mortality risk, making transcatheter closure a good option in patients with significant regurgitant volume or hae-
molysis (Figure 13). 3D TEE is the preferred imaging modality for pre-procedural evaluation of the orifice shape and size (planimetric area), for peri-procedural guidance – including the use for additional devices –, post-procedural evaluation of the results and follow-up.

Newly developed technologies that synchronize multimodality imaging – fusion imaging – may increase diagnostic accuracy and procedural precision in transcatheter MV repair and replacement. Of particular importance is echocardiographic and fluoroscopic imaging fusion (i.e. EchoNavigator system, Philips Healthcare), which facilitates procedural guiding in MV repair by providing depth perception and demonstrating the relationship between devices and surrounding structures. 3DE TEE plays a leading role in all the procedural steps for MitraClip implantation: transseptal puncture, device positioning, proper leaflet grasping and post-deployment evaluation of the results (residual MV orifice area and MR reduction, difficult to assess given the double – or even triple – MV orifice and the subsequent multiple regurgitation jets) and possible complications (iatrogenic interatrial defect).

Artificial chordal implantation is another option for patients with degenerative MV disease and TEE 3DE plays a major role in patient selection, identifying the site of implantation (site of prolapse), the number of chords needed, as well as the appropriate chordal length. During the procedure, TEE is useful in checking the LV site of puncture, excluding subvalvular apparatus entrapment by the delivery catheters, ensuring proper leaflet grasping and post-deployment evaluation of the results (residual MV orifice area and MR reduction, difficult to assess given the double – or even triple – MV orifice and the subsequent multiple regurgitation jets) and possible complications (iatrogenic interatrial defect).

LIMITATIONS OF 3DE AND FUTURE PERSPECTIVES

Traditionally, 3DE was subject to artefacts related to inaccurate gain settings, the inability of the patient to hold respiration and the presence of arrhythmias.
Moreover, high-quality transthoracic 3D data sets are greatly dependent on a good acoustic window and the experience of the echocardiographer. 3D TEE images are easier to obtain, real-time acquisitions being often sufficient for an accurate diagnosis due to the reduced 3D volume acquisition and high spatial resolution. However, the new 3D technology allowing single-beat acquisitions at high frame-rate has overcome most of the previous limitations, and the automated software packages for MV geometry assessment requiring only minimal manual intervention have made 3DE easier to learn and more reproducible.

Another limitation of 3DE is the lack of tissue characterization. Since the different colors of the images are coding the depth of the structure from the transducer and not the tissue characteristics, differentiating intracardiac masses (calcifications, tumor versus thrombus or endocarditis versus thrombus) is challenging by 3DE only. Moreover, due to the lower spatial resolution, small structures (such as vegetations) appear larger in 3DE than in 2DE images, a limitation that can be overcome by displaying 3D datasets as longitudinal or transversal 2D slices.

CONCLUSION

The advent of 3DE has changed completely the way the MV is evaluated by echocardiography and opened a new era in the transcatheter treatment of MV diseases. Application of 3DE in the evaluation of MV contributes with essential anatomical and functional information, independently of the clinical indication, and should be the technique of choice whenever a complex MV lesion is suspected. The systematic training in 3DE acquisition and interpretation appears to be pivotal in the near future for physicians dealing with patients with MV diseases.

Conflict of interest: none declared.

Financial support: Dr. Andrada C. Guta has received a research grant from the Romanian Society of Cardiology in 2018.

References

30. Min SY, Song JM, Kim YJ, Park HK, Seo MO, Lee MS, et al. Discrep-

34. Wilkins GT, Weyman AE, Abascal VM, Block PC, Palacios IF. Per-

35. Wilkins GT, Weyman AE, Abascal VM, Block PC, Palacios IF. Per-

36. Ermacora D, Muraru D, Cecchetto A, Cucchiini U, Badano LP. Trans-

38. Taramasso M, Feldman T, Maisano F. Transcatheter mitral valve re-

39. Di Salvo G, Miller O, Babu Narayan S, Li W, Buds T, Valsangiac-

40. Tamporini G, Muratori M, Maltagliati A, Galli CA, Natali M, Zano-

43. Pardi MM, Pomerantz PPE, Sampaio RO, Abduch MC, Brandao CMA, Mathias W, Jr., et al. Relation of mitral valve morphology to surgical repair results in patients with mitral valve prolapse: A three-

45. Ring L, Dutka DP, Wells FC, Fynn SP, Shapiro LM, Rana BS. Mecha-

46. Ermacora D, Muraru D, Cecchetto A, Cucchiini U, Badano LP. Trans-

50. Taramasso M, Feldman T, Maisano F. Transcatheter mitral valve re-

51. Di Salvo G, Miller O, Babu Narayan S, Li W, Buds T, Valsangiac-

53. Pardi MM, Pomerantz PPE, Sampaio RO, Abduch MC, Brandao CMA, Mathias W, Jr., et al. Relation of mitral valve morphology to surgical repair results in patients with mitral valve prolapse: A three-

55. Rihal CS, Sorajja P, Booker JD, Hagler DJ, Cabalka AK. Principles of atrial mitral regurgitation: insights using 3D transoesopha-

57. Khaliq OK, Hahn RT. Role of Echocardiography in Transcathe-

58. Faletra FF, Pozzoli A, Agricola E, Guidotti A, Biasco L, Leo LA, et al. 3DE for mitral valve disease